Deduce some properties of a group from its presentation


Let Y = \langle a, b \ |\ a^4 = b^3 = 1, ab = b^2 a^2 \rangle.
  1. Show that b^2 = b^{-1}.
  2. Show that b commutes with a^3.
  3. Show that b commutes with a.
  4. Show that ab = 1.
  5. Show that a = 1 and b = 1, hence Y = 1.

  1. From the relation b^3 = 1 it follows that b^{-1} = b^2.
  2. Note first that
    b^2 a^3 b = (bbaa)(ab)
     = (ab)(bbaa)
     = (a)(b^3)(aa)
     = a^3
    So that, left multiplying by b, we have a^3 b = b a^3.
  3. Note that a^9 = a^4 a^4 a = a. Hence a b = a^9 b = (a^3)^3 b = b (a^3)^3 = ba, using part 2.
  4. We have ba = ab = b^2 a^2, so that ba = 1. Thus ab = 1.
  5. Since u^4 = v^3 = 1, we have u^4 v^3 = 1. Thus u (u^3 v^3) = u = 1, so that v = 1. Hence Y = 1.



No comments:

Post a Comment