Exhibit an alternate presentation for Dih(4)


Show that D_4 = \langle x, y \ |\ x^2 = y^2 = (xy)^2  = 1 \rangle using the substitutions x = r and y = s.

It suffices to show that (xy)^2 = 1 implies rs = sr^{-1} and vice versa. For the forward direction, we have (rs)^2 = rsrs = 1 so that rs = s^{-1} r^{-1} = sr^{-1}. For the backward direction, we have rs = sr^{-1} so that rsrs^{-1} = (rs)^2 = (ab)^2 = 1.




No comments:

Post a Comment