A finite direct product is abelian if and only if each direct factor is abelian

Let A and B be groups. Prove that A \times B is abelian if and only if A and B are abelian.

(\Rightarrow) Suppose a_1, a_2 \in A and b_1, b_2 \in B. Then (a_1 a_2, b_1 b_2) = (a_1, b_1) \cdot (a_2, b_2) = (a_2, b_2) \cdot (a_1, b_1) = (a_2 a_1, b_2 b_1). Since two pairs are equal precisely when their corresponding entries are equal, we have a_1 a_2 = a_2 a_1 and b_1 b_2 = b_2 b_1. Hence A and B are abelian.
(\Leftarrow) Suppose (a_1, b_1), (a_2, b_2) \in A \times B. Then we have (a_1, b_1) \cdot (a_2, b_2) = (a_1 a_2, b_1 b_2) = (a_2 a_1, b_2 b_1) = (a_2, b_2) \cdot (a_1, b_1). Hence A \times B is abelian.




There is a unique noncyclic group of order 4


Assume that G = \{1, a, b, c\} is a group of order 4 with identity 1. Assume also that G has no element of order 4. Use the cancellation laws to show that there is a unique (up to a permutation of the rows and columns) group table for G. Deduce that G is abelian.

Let x,y be distinct nonidentity elements of G. If xy = x, then by left cancellation we have y = 1, a contradiction. So xy is either 1 or the third nonidentity element. Also, if x \neq 1 we have x^2 \neq x since otherwise x = 1.
Now we need to find all the possible ways to fill in the following group table under the given constraints.
1abc
11abc
aa
bb
cc
Suppose ab = 1. Then ba = 1, and there are two possibilities for ac. If ac = 1, then we have ab = ac and so b = c, a contradiction. Hence ac = b. There are two possibilities for bc. If bc = 1, then bc = ba and by left cancellation we have c = a, a contradiction. Hence bc = a. Now since c must have an inverse, we have c^2 = 1. Now there are three possibilities for a^2. If a^2 = 1, we have a^2 = ab and so a = b, a contradiction. If a^2 = b, then we have a^2 = ac and so a = c, a contradiction. Hence a^2 = c. But now we have a^2 = ca^3 = b, and a^4 = 1, so |a| = 4, a contradiction. Hence ab \neq 1.
Now we have ab = c. There are two possibilities for ba. If ba = 1, then we have ca = aba = a so that c = 1, a contradiction. Hence ba = c. Now there are three possibilities for a^2. If a^2 = b, then a^3 = ab = c, so that |a| = 4, a contradiction. If a^2 = c, then a^2 = ab so that a = b, a contradiction. Hence a^2 = 1. Now there are two possibilities for ac. If ac = 1, we have ac = a^2 so that a = c, a contradiction. Hence ac = b. Similarly, there are two possibilities for ca. If ca = 1 we have ca = a^2 so that a = c, a contradiction. Hence ca = b. There are three possibilities for b^2. If b^2 = c, then we have b^2 = ab so that a = b, a contradiction. If b^2 = a, then b^3 = ba = c and so |b| = 4, a contradiction. Thus b^2 = 1. There are two possibilities for bc. If bc = 1, then bc = b^2 so that b = c, a contradiction. Hence bc = a. Likewise there are two possibilities for cb. If cb = 1 we have cb = b^2 so that b = c, a contradiction. Hence cb = a. Finally, there are three possibilities for c^2. If c^2 = a, we have c^2 = bc so that b = c, a contradiction. If c^2 = b, we have c^2 = ac so that c = a, a contradiction. Thus c^2 = 1.
Thus we have uniquely determined the group table for G, as shown below.
1abc
11abc
aa1cb
bbc1a
ccba1
Note that the group table for G is a symmetric matrix. By a previous resultG is abelian.