Characterize the elements of cyclic subgroups

Let G be a group, and let x \in G be an element of finite order; say |x| = n. Use the Division Algorithm to show that any integral power of x is equal to one of the elements in the set A = \{ 1, x, x^2, \ldots, x^{n-1} \}. Conclude that A is precisely the set of distinct elements of the cyclic subgroup of G generated by x.

Let k \in \mathbb{Z}. By the Division Algorithm, there exist unique integers (q,r) such that k = qn + r and 0 \leq r < |n|. Thus x^k = x^{qn + r} = (x^n)^q x^r = x^r, where x^r \in A.
Hence the cyclic subgroup of G generated by x is A; moreover, by a previous result, the elements of A are all distinct.








The order of a group element is smaller than the cardinality of the group


Let G be a group and x \in G an element of order n < \infty. Prove that the elements 1, x, x^2, \ldots, x^{n-1} are all distinct. Deduce that |x| \leq |G|.

Suppose to the contrary that x^a = x^b for some 0 \leq a < b \leq n-1. Then we have x^{b-a} = 1, with 1 \leq b-a < n. However, recall that n is by definition the least integer k such that x^k = 1, so we have a contradiction. Thus all the x^i0 \leq i \leq n-1, are distinct.
In particular, we have \{ x^i \ |\ 0 \leq i \leq n-1 \} \subseteq G, so that |x| = n \leq |G|.




The powers of a group element of infinite order are pairwise distinct


Let G be a group, and let x \in G be an element of infinite order. Prove that the elements x^k with k \in \mathbb{Z} are all distinct.

Suppose to the contrary that x^a = x^b for some (distinct) integers a and b; without loss of generality say a < b. Then we have x^{b-a} = 1 and 0 < b-a. This is a contradiction since x has infinite order; thus no such a and b exist.




Properties of inverses in a finite cyclic subgroup


Let G be a group and x \in G an element of finite order, say |x| = n.
  1. Prove that if n = 2k+1 is odd and 1 \leq i < n, then x^i \neq x^{-i}.
  2. Prove that if n = 2k is even and 1 \leq i < n, then x^i = x^{-i} if and only if i = k.

We begin with a lemma.
Lemma 1. Let n,k \in \mathbb{Z}^+. If 2 \leq k < n and n|k, then n = k. Proof: We have k = nq for some q \in \mathbb{N}. If q \geq 2, then since 2k \leq 2n, we have k < 2k \leq 2n \leq k, a contradiction. Thus q = 1 and we have k = n\square
Now for the main results.
  1. If x^i = x^{-i} for some 1 \leq i < n, we have x^{2i} = 1 and thus n|2i by a lemma to a previous example. Since n is odd, we have n|i. By the lemma, i = n, a contradiction.
  2. (\Leftarrow) Clearly, if i = k then x^{2i} = 1, so that x^i = x^{-i}(\Rightarrow) Suppose x^i = x^{-i} for some 1 \leq i < n. Then x^{2i} = 1. By the Division Algorithm we have 2i = qn + r for some integers q and r with 0 \leq r  0, we have a contradiction, so that r = 0. Hence 2i = qn. Now we must have q > 0, and since 0 < 2i < 2n we have 0 < qn < 2n and hence q=1. So 2i = 2k and thus i = k.