Deduce some properties of a group from its presentation


Let Y = \langle a, b \ |\ a^4 = b^3 = 1, ab = b^2 a^2 \rangle.
  1. Show that b^2 = b^{-1}.
  2. Show that b commutes with a^3.
  3. Show that b commutes with a.
  4. Show that ab = 1.
  5. Show that a = 1 and b = 1, hence Y = 1.

  1. From the relation b^3 = 1 it follows that b^{-1} = b^2.
  2. Note first that
    b^2 a^3 b = (bbaa)(ab)
     = (ab)(bbaa)
     = (a)(b^3)(aa)
     = a^3
    So that, left multiplying by b, we have a^3 b = b a^3.
  3. Note that a^9 = a^4 a^4 a = a. Hence a b = a^9 b = (a^3)^3 b = b (a^3)^3 = ba, using part 2.
  4. We have ba = ab = b^2 a^2, so that ba = 1. Thus ab = 1.
  5. Since u^4 = v^3 = 1, we have u^4 v^3 = 1. Thus u (u^3 v^3) = u = 1, so that v = 1. Hence Y = 1.



Exhibit an alternate presentation for Dih(4)


Show that D_4 = \langle x, y \ |\ x^2 = y^2 = (xy)^2  = 1 \rangle using the substitutions x = r and y = s.

It suffices to show that (xy)^2 = 1 implies rs = sr^{-1} and vice versa. For the forward direction, we have (rs)^2 = rsrs = 1 so that rs = s^{-1} r^{-1} = sr^{-1}. For the backward direction, we have rs = sr^{-1} so that rsrs^{-1} = (rs)^2 = (ab)^2 = 1.




Deduce some properties of a group from its presentation


Let X_{2n} = \langle x, y \ |\ x^n = y^2 = 1, xy = yx^2 \rangle.
  1. Show that if n = 3k, then X^{2n} has order 6, and that it has the same generators and relations as D_6 with x = r and y = s.
  2. Show that if \mathsf{gcd}(3,n) = 1, then x satisfies the additional relation x = 1. In this case, deduce that X_{2n} has order 2. (Use the fact that x^n = x^3 = 1.)

Note that, according to the text, every element of X_{2n} can be written as y^a x^b with 0 \leq a < 2 and 0 \leq b < n. Moreover, we have x = xy^2 = xyy = yx^2y = y^2 x^4 = x^4, so that x^3 = 1. Thus X_{2n} = \langle x, y \ |\ x^3 = y^2 = 1, xy = yx^2 \rangle, and in fact we can write elements of X_{2n} as y^a x^b where 0 \leq a < 2 and 0 \leq b < 3, so that |X_{2n}| \leq 6.
  1. If n = 3k, we have x^n = x^{3k} = 1^k = 1. Since x and y are distinct, then, none of the elements y^a x^b with 0 \leq a < 2 and 0 \leq b < 3 can be equal. Thus |X_{2n}| = 6. Moreover, if we let x = r and y = s, then X_{2n} clearly satisfies the same relations as D_6.
  2. If \mathsf{gcd}(3,n) = 1, then we have either n = 3k + 1, so that x = 1, or n = 3k + 2, so that xy = yx^2 = y and thus x = 1. In either case, x = 1, so that the elements of X_{2n} are precisely 1 and y.